Artificial intelligence is accelerating at breakneck speed, transforming almost every industry from healthcare through to logistics. Yet, as AI continues to reshape the world, it’s placing a rapidly growing strain on one crucial resource:
Energy.
As AI’s energy requirements are on track to eclipse that of entire developed nations within the next few decades, tech companies are being forced to choose between adhering to environmental targets or being able to meet the insatiable energy demands of AI, a decision-point that has led the industry as a whole to regress into a worrying dependence on older, non-sustainable power sources.
In an era of climate urgency, the question is no longer just what AI can do for us, but instead, what price we’re willing to pay for its power.
The Hunger of AI
AI’s energy requirements are massive - and climbing rapidly. Running a single data centre for AI training, cloud storage, and processing demands an extraordinary amount of electricity, much more than traditional computing workloads.
By 2035, US-based data centres alone could consume 480 terawatt-hours (TWh), approaching a whopping 10% of the country’s (already vast) total energy use. Globally, data centres may reach 1,000 TWh by 2026, close to double Germany’s entire annual power consumption.
As AI capabilities grow, these demands are expected to continue to rise exponentially. Microsoft’s environmental report already reflects this reality, with its next-gen AI data centres using 29% more electricity than just four years ago, reversing the trendline we were all hoping to see.
Renewable energy has made massive strides but is struggling to keep pace with this rapidly spiralling demand. Solar and wind power, while critical to future energy systems, remain subject to weather fluctuations that can’t currently reliably meet AI’s 24/7 power needs. As a result, tech giants are increasingly turning to alternatives, including nuclear power and, worryingly – fossil fuels, particularly natural gas. This is a troubling backwards slide toward unsustainability that’s sparking complex debates about AI’s true environmental cost.
Nuclear Power: Clean but Contentious
To support AI’s energy appetite without further inflating their carbon footprints, some tech companies are leaning toward the oft-maligned nuclear power. Google recently announced plans to power its data centres with energy from small modular reactors (SMRs), promoting them as clean and dependable. Similarly, Microsoft has invested in a partnership with Constellation Energy to bring a previously defunct Pennsylvania nuclear plant back online, ensuring a consistent, emissions-free energy source for its AI infrastructure.
Nuclear power offers a key advantage: a steady, carbon-free power supply that doesn’t depend on weather. Yet, the choice remains fraught. Nuclear waste, safety risks, and disasters like Fukushima & Chernobyl loom large in public memory, making nuclear power a polarising option.
For companies like Microsoft, the stability of nuclear power outweighs these risks, especially as they race to expand their AI capabilities. But the move isn’t without complications. Microsoft’s deepening partnerships with fossil fuel giants show that even as they embrace nuclear and renewable power, tech companies still struggle with competing interests in the journey toward sustainability.
AI and the Fossil Fuel Revival
Amidst the clamour to scale clean energy, the fossil fuel industry is quietly benefiting from AI’s enormous power needs, particularly in the realm of natural gas. Toby Rice, CEO of EQT - the largest gas producer in the US - views AI’s rise as a “boon” for natural gas, comparing its potential to the US shale boom. It’s a perspective shared across the entire industry, with energy executives arguing that renewables alone can’t yet satisfy the colossal energy appetite of AI-driven data centres.
In particular, Microsoft’s dual role is emblematic of the tension between AI’s environmental promise and its environmental cost. Whilst the company is publicly committed to sustainability but continues to work closely with fossil fuel giants like Chevron and ExxonMobil, promoting AI tools designed to optimise oil and gas production. These partnerships are enormously lucrative, yet they tarnish Microsoft’s green credentials, illustrating the broader struggle within the tech industry to balance growth and shareholder appeasement with responsible environmental stewardship, a balance that it has, thus far, been very poor at maintaining.
The Nuance
As if it wasn’t already complex enough, It’s not all a one-way street. AI isn’t just a voracious energy consumer it’s also helping to make energy systems more efficient and resilient. As renewable energy sources expand, balancing supply and demand becomes increasingly complex, requiring intelligent solutions to smooth out fluctuations in energy production and consumption. AI systems are helping to stabilise the grid by optimising energy storage and distribution.
In Texas, for example, an additional 5 gigawatts (the equivalent of about four large nuclear power plants’ worth) of battery storage since 2021 has helped ensure energy reliability by capturing excess power and releasing it during peak demand. AI tools from companies like WattTime use predictive algorithms to control battery storage, ensuring the batteries are charging and disseminating power at optimal times. Meanwhile, platforms like Electricity Maps forecast green energy output, enabling companies such as Google to power data centres during periods of high renewable availability. These AI-driven innovations represent a significant step forward, helping to bring the vision of a low-carbon energy grid closer to reality.
AI is also monitoring power infrastructure to prevent outages and environmental hazards. Buzz Solutions, for example, deploys AI to inspect power lines for corrosion, vegetation encroachment, and wildlife interference—issues that can cause fires and other disruptions, especially in high-risk areas like California. This capability to handle unpredictability, especially in an environmental context, is going to be essential in our likely destabilised future.
Navigating Tomorrow
The rapid rise of AI in the tech landscape has triggered an energy crisis that demands both immediate attention and innovation. As AI reshapes industries and enables breakthroughs, it also intensifies our dependence on high-powered data centres, forcing tech companies to make tough choices about energy sources. The reliance on nuclear energy and partnerships with fossil fuel industries highlight a critical truth:
Without strategic intervention, the environmental costs of AI could conceivably outpace its benefits.
To fully unlock AI’s promise without compromising the planet, companies must go beyond temporary fixes and adopt a multi-layered approach. This means investing heavily in cleaner, scalable energy sources, accelerating advancements in energy efficiency, and addressing the ethical complexities of fossil fuel partnerships.
We’re at an inflection point: AI can either become a catalyst for sustainable progress or entrench us deeper into outdated energy dependencies at a point when time is a luxury we simply do not have.
As the stewards of this technology, the tech industry has a responsibility to lead, ensuring that the future of AI aligns with our environmental goals. Only by pursuing a path of responsible innovation - one that actually balances AI’s power with a real commitment to sustainable energy, backed by action - can we create a digital landscape that truly benefits both industry and the planet.
يتسارع الذكاء الاصطناعي بسرعة مذهلة، مما يؤدي إلى تحويل كل الصناعات تقريبًا من الرعاية الصحية إلى الخدمات اللوجستية.
ومع ذلك، مع استمرار الذكاء الاصطناعي في إعادة تشكيل العالم، فإنه يفرض ضغطًا متزايدًا بسرعة على أحد الموارد المهمة: الطاقة.
نظرًا لأن متطلبات الطاقة في الذكاء الاصطناعي تسير على الطريق الصحيح لتتجاوز احتياجات الدول المتقدمة بأكملها خلال العقود القليلة المقبلة، تضطر شركات التكنولوجيا إلى الاختيار بين الالتزام بالأهداف البيئية أو القدرة على تلبية متطلبات الطاقة النهمة للذكاء الاصطناعي، وهي نقطة القرار التي أدت الصناعة ككل إلى التراجع إلى الاعتماد المثير للقلق على مصادر الطاقة القديمة وغير المستدامة.
في عصر المناخ الملح، لم يعد السؤال هو ما الذي يمكن أن يفعله الذكاء الاصطناعي لنا فحسب، بل ما هو الثمن الذي نحن على استعداد لدفعه مقابل قوته.
جوع الذكاء الاصطناعي
إن متطلبات الذكاء الاصطناعي من الطاقة هائلة، وتتزايد بسرعة.
يتطلب تشغيل مركز بيانات واحد للتدريب على الذكاء الاصطناعي والتخزين السحابي والمعالجة قدرًا غير عادي من الكهرباء، وهو أكثر بكثير من أحمال عمل الحوسبة التقليدية.
بحلول عام 2035، من الممكن أن تستهلك مراكز البيانات في الولايات المتحدة وحدها 480 تيراواط/ساعة، وهو ما يقترب من 10% من إجمالي استخدام الطاقة (الضخم بالفعل) في البلاد. وعلى الصعيد العالمي، قد تصل طاقة مراكز البيانات إلى 1000 تيراواط/ساعة بحلول عام 2026، أي ما يقرب من ضعف إجمالي استهلاك الطاقة السنوي في ألمانيا.
مع نمو قدرات الذكاء الاصطناعي، من المتوقع أن تستمر هذه الطلبات في الارتفاع بشكل كبير. ويعكس تقرير مايكروسوفت البيئي هذا الواقع بالفعل، حيث تستخدم مراكز بيانات الذكاء الاصطناعي من الجيل التالي 29٪ أكثر من الكهرباء مما كانت عليه قبل أربع سنوات فقط، مما يعكس الاتجاه العكسي الذي كنا نأمل جميعًا في رؤيته.
لقد قطعت الطاقة المتجددة خطوات هائلة ولكنها تكافح من أجل مواكبة هذا الطلب المتزايد بسرعة. تظل الطاقة الشمسية وطاقة الرياح، على الرغم من أهميتهما لأنظمة الطاقة المستقبلية، عرضة لتقلبات الطقس التي لا يمكنها حاليًا تلبية احتياجات الذكاء الاصطناعي من الطاقة على مدار الساعة طوال أيام الأسبوع بشكل موثوق.
الطاقة النووية: نظيفة ولكن مثيرة للجدل
لدعم شهية الذكاء الاصطناعي للطاقة دون زيادة تضخيم آثارها الكربونية، تميل بعض شركات التكنولوجيا نحو الطاقة النووية التي غالبًا ما يتم انتقادها.
أعلنت جوجل مؤخرًا عن خطط لتزويد مراكز بياناتها بالطاقة من مفاعلات معيارية صغيرة (SMRs)، للترويج لها باعتبارها نظيفة ويمكن الاعتماد عليها.
وبالمثل، استثمرت مايكروسوفت في شراكة مع شركة كونستيليشن إنيرجي لإعادة محطة بنسلفانيا النووية التي توقفت عن العمل سابقًا إلى العمل مرة أخرى، مما يضمن مصدر طاقة ثابتًا وخاليًا من الانبعاثات لبنيتها التحتية للذكاء الاصطناعي.
توفر الطاقة النووية ميزة رئيسية: مصدر طاقة ثابت وخالي من الكربون ولا يعتمد على الطقس. ومع ذلك، يظل الاختيار محفوفًا بالمخاطر. النفايات النووية، ومخاطر السلامة، وكوارث مثل فوكوشيما وتشيرنوبيل تظل عالقة في الذاكرة العامة، مما يجعل الطاقة النووية خيارًا مثيرًا للجدل.
بالنسبة لشركات مثل مايكروسوفت، فإن استقرار الطاقة النووية يفوق هذه المخاطر، خاصة مع سعيها لتوسيع قدراتها في الذكاء الاصطناعي. لكن هذه الخطوة لا تخلو من التعقيدات. تُظهر الشراكات المتزايدة لمايكروسوفت مع عمالقة الوقود الأحفوري أنه حتى مع تبنيها للطاقة النووية والمتجددة، لا تزال شركات التكنولوجيا تكافح مع المصالح المتضاربة في رحلتها نحو الاستدامة.
الذكاء الاصطناعي وإحياء الوقود الأحفوري
وسط الضجة المطالبة بتوسيع نطاق الطاقة النظيفة، تستفيد صناعة الوقود الأحفوري بهدوء من احتياجات الذكاء الاصطناعي الهائلة من الطاقة، لا سيما في مجال الغاز الطبيعي.
ويرى توبي رايس، الرئيس التنفيذي لشركة EQT - أكبر منتج للغاز في الولايات المتحدة - أن صعود الذكاء الاصطناعي بمثابة نعمة للغاز الطبيعي، مقارنة إمكاناته بطفرة الصخر الزيتي في الولايات المتحدة.
إنه منظور مشترك عبر الصناعة بأكملها، حيث يجادل المسؤولون التنفيذيون في مجال الطاقة بأن مصادر الطاقة المتجددة وحدها لا تستطيع بعد تلبية شهية الطاقة الهائلة لمراكز البيانات التي تعتمد على الذكاء الاصطناعي.
على وجه الخصوص، يعد الدور المزدوج لشركة Microsoft رمزًا للتوتر بين الوعد البيئي للذكاء الاصطناعي وتكلفته البيئية. في حين أن الشركة ملتزمة علنًا بالاستدامة، إلا أنها تواصل العمل بشكل وثيق مع عمالقة الوقود الأحفوري مثل شيفرون وإكسون موبيل، للترويج لأدوات الذكاء الاصطناعي المصممة لتحسين إنتاج النفط والغاز.
إن هذه الشراكات مربحة للغاية، ولكنها تشوه مؤهلات ميكروسوفت الخضراء، مما يوضح النضال الأوسع داخل صناعة التكنولوجيا لتحقيق التوازن بين النمو واسترضاء المساهمين والإشراف البيئي المسؤول، وهو التوازن الذي كانت حتى الآن سيئة للغاية في الحفاظ عليه.
الفارق الدقيق
كما لو لم يكن الأمر معقدًا بما فيه الكفاية، فهو ليس شارعًا ذو اتجاه واحد. الذكاء الاصطناعي ليس مجرد مستهلك شره للطاقة، بل يساعد أيضًا في جعل أنظمة الطاقة أكثر كفاءة ومرونة.
مع توسع مصادر الطاقة المتجددة، يصبح تحقيق التوازن بين العرض والطلب معقدًا بشكل متزايد، مما يتطلب حلولًا ذكية لتخفيف التقلبات في إنتاج الطاقة واستهلاكها.
تساعد أنظمة الذكاء الاصطناعي على استقرار الشبكة من خلال تحسين تخزين الطاقة وتوزيعها.
في تكساس، على سبيل المثال، ساعد تخزين البطاريات بقدرة 5 جيجاوات إضافية (أي ما يعادل حوالي أربع محطات طاقة نووية كبيرة) منذ عام 2021 على ضمان موثوقية الطاقة من خلال التقاط الطاقة الفائضة وإطلاقها خلال ذروة الطلب.
تستخدم أدوات الذكاء الاصطناعي من شركات مثل WattTime خوارزميات تنبؤية للتحكم في تخزين البطارية، مما يضمن شحن البطاريات وتوزيع الطاقة في الأوقات المثالية.
وفي الوقت نفسه، تتنبأ منصات مثل خرائط الكهرباء (Electricity Maps) بإنتاج الطاقة الخضراء، مما يمكن شركات مثل جوجل من تشغيل مراكز البيانات خلال فترات التوافر العالي للطاقة المتجددة.
تمثل هذه الابتكارات المعتمدة على الذكاء الاصطناعي خطوة مهمة إلى الأمام، مما يساعد على تقريب رؤية شبكة الطاقة المنخفضة الكربون إلى الواقع.
يقوم الذكاء الاصطناعي أيضًا بمراقبة البنية التحتية للطاقة لمنع انقطاع التيار الكهربائي والمخاطر البيئية.
على سبيل المثال، تستخدم Buzz Solutions الذكاء الاصطناعي لفحص خطوط الكهرباء بحثًا عن التآكل والتعدي على الغطاء النباتي ومشكلات التدخل في الحياة البرية التي يمكن أن تسبب حرائق واضطرابات أخرى، خاصة في المناطق شديدة الخطورة مثل كاليفورنيا.
ستكون هذه القدرة على التعامل مع عدم القدرة على التنبؤ، وخاصة في السياق البيئي، ضرورية في مستقبلنا المحتمل الذي قد يتسم بعدم الاستقرار.
التوجه نحو المستقبل
أدى الارتفاع السريع للذكاء الاصطناعي في المشهد التكنولوجي إلى أزمة طاقة تتطلب اهتمامًا فوريًا وابتكارًا.
إن الاعتماد على الطاقة النووية والشراكات مع صناعات الوقود الأحفوري يسلط الضوء على حقيقة حاسمة:
في غياب التدخل الاستراتيجي، يمكن أن تتجاوز التكاليف البيئية للذكاء الاصطناعي فوائده.
لإطلاق العنان للذكاء الاصطناعي بشكل كامل، دون المساس بالكوكب، يجب على الشركات تجاوز الإصلاحات المؤقتة واعتماد نهج متعدد الطبقات.
نحن عند نقطة تحول:
يمكن للذكاء الاصطناعي أن يصبح إما محفزًا للتقدم المستدام أو أن يرسخنا في الاعتماد على الطاقة القديمة، في وقت أصبح فيه الوقت نفسه رفاهية لا نملكها.
وباعتبارها مشرفة على هذه التكنولوجيا، تتحمل صناعة التكنولوجيا مسؤولية القيادة، مما يضمن أن مستقبل الذكاء الاصطناعي يتماشى مع أهدافنا البيئية. ولن يتسنى لنا خلق مشهد رقمي يعود بالنفع على الصناعة والكوكب إلا من خلال اتباع مسار الابتكار المسؤول ــ المسار الذي يوازن فعلياً بين قوة الذكاء الاصطناعي والالتزام الحقيقي بالطاقة المستدامة، والمدعوم بالعمل ــ.